Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 56

Answer

See below

Work Step by Step

Given: $R=3\Omega\\C=\frac{3}{10}H\\E(t)=10V$ When switch is closed in circuit, we have: $E(t)-iR-\frac{q}{c}=0$ Let $i=\frac{dq}{dt}$, we get: $E(t)-\frac{dq}{dt}R-\frac{q}{c}=0$ Substitute :$10-3i-\frac{3}{i}\frac{di}{dt}=0\\ \rightarrow \frac{dq}{dt}+10i=\frac{100}{3}$ Integrating factor is: $I(t)=e^{\int 10dt}=e^{10t}$ The equation becomes: $\frac{d}{dt}(ie^{10t})=\frac{100}{3}e^{10t}$ Integrating both sides: $ie^{10t})=\frac{10}{3}e^{10t}+c$ Then, $i(t)=\frac{10}{3}+ce^{-10t}$ Since $i(0)=3A$, we have: $c+\frac{10}{3}=3\\ \rightarrow c=-\frac{1}{3}$ The current in the circuit is: $i(t)=\frac{10}{3}-\frac{1}{3}e^{-10t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.