Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 51

Answer

See below

Work Step by Step

The differential equation for the velocity of an object at time $t$, we have: $\frac{dv}{dt}+kv=80ke^{-kt}$ Integrating factor could be: $I(x)=e^{\int kdt}=e^{kt}$ The equation becomes: $ \frac{d}{dt}(ve^{kt})=80k$ Integrating both sides: $\rightarrow ve^{kt}=80kt+c\\\rightarrow v(t)=\frac{80kt+c}{e^{kt}}$ Use the initial-value condition $v(0)=20$ to find $c=20$ Thus, the solution is: $v(t)=\frac{80kt+20}{e^{kt}}$ a) The velocity of the object is not changing and remaining the same $20$ b) Given: $\frac{dv}{dt}(0)=2$ then $\frac{dv}{dt}=e^{-kt}80k-ke^{-kt}80kt-ke^{-kt}20\\=20ke^{-kt}(4-4kt-1)\\=20ke^{-kt}(3-4kt)$ Substitute: $20.3.k=2\\ \rightarrow k=\frac{1}{30}$ c) The velocity of the object $t$: $v(t)=(\frac{8}{3}t+20)e^{-\frac{1}{30}t}$ d) Find a value for $t$: $(\frac{8}{3}t+20)e^{-\frac{1}{30}t}=0\\ \rightarrow \frac{8}{3}t+20=0 \lor e^{-\frac{1}{30}t}=0\\ \rightarrow t=-\frac{60}{8} \lor t=\infty$ Since time can not be a negative value, there is not a finite time $t\gt 0$ at which object is at rest. e) When $t\rightarrow \infty$, it follows that $v(t) \rightarrow 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.