Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 49

Answer

See below

Work Step by Step

According to Newton's Law of Cooling, we have: $T(0)=150\\T(10)=125\\T_m=70\\T(t_0)=100$ The temperature of the plate at time $t$ can be expressed as: $\frac{dT}{dt}=-k(T-70)\\\rightarrow \frac{dT}{T-70}=-kdt$ Integrate both sides: $\int \frac{dT}{T-70}=\int -kdt\\ \rightarrow \ln|T-70|=-kt +c\\ \rightarrow T(t)=c_1e^{-kt}+70$ Use the initial-value condition $T(0)=150$ to find: $c_1+70=150\\c_1=80$ Thus, the solution is: $T(t)=80e^{-kt}+70$ For $t_0$, we use $T(10)=125$: $80e^{-10k}+70=125\\ \rightarrow e^{-10k}=\frac{55}{80}=\frac{11}{16}\\ \rightarrow -10k=\ln\frac{11}{16}\\ \rightarrow k=-\frac{1}{10}\ln\frac{11}{16}$ Substitute back: $80e^{t_0\frac{1}{10}\ln\frac{11}{16}}+70=100\\ \rightarrow e^{t_0\frac{1}{10}\ln\frac{11}{16}}=\frac{30}{80}=\frac{3}{8}\\ \rightarrow t_0\frac{1}{10}\ln\frac{11}{16}=\ln\frac{3}{8}$ Therefore, the plate reach 100 Celcius degree at: $t_0=10\frac{\ln\frac{3}{8}}{\ln\frac{11}{16}}\approx26.18$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.