Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 111: 55

Answer

See below

Work Step by Step

Given: $R=4\Omega\\C=\frac{1}{5}F\\E(t)=6\cos 2tV$ When switch is closed in circuit, we have: $E(t)-iR-\frac{q}{c}=0$ Let $i=\frac{dq}{dt}$, we get: $E(t)-\frac{dq}{dt}R-\frac{q}{c}=0$ Substitute :$6\cos 2t-\frac{dq}{dt}4-5q=0\\ \rightarrow \frac{dq}{dt}+\frac{5}{4}q=\frac{3}{2}\cos 2t$ Integrating factor is: $I(t)=e^{\int \frac{5}{4}dt}=e^{\frac{5}{4}t}$ The equation becomes: $\frac{d}{dt}(qe^{\frac{5}{4}t})=\frac{3}{2}\cos 2te^{\frac{5}{4}t}$ Integrating both sides: $qe^{\frac{5}{4}t})=\int \frac{3}{2}\cos 2te^{\frac{5}{4}t}$ Using integration by parts, we have: $q(t)=\frac{6}{89}(8\sin 2t+5\cos 2t)+ce^{-\frac{5}{4}t}$ Since $q(0)=3C$, we have: $c+\frac{30}{89}=3\\ \rightarrow c=\frac{237}{89}$ Hence, the solution is: $q(t)=\frac{6}{89}(8\sin 2t+5\cos 2t)+\frac{237}{89}e^{-\frac{5}{4}t}$ The current in the circuit is: $i(t)=\frac{12}{89}(8\sin 2t-5\sin 2t)-\frac{1185}{356}e^{-\frac{5}{4}t}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.