Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.2 Computing Limits - Exercises Set 1.2 - Page 69: 1

Answer

(a)-6 (b)13 (c)-8 (d)16 (e)2 (f)-1/2

Work Step by Step

$(a)\lim\limits_{x \to a}[f(x)+2g(x)]=\lim\limits_{x \to a}[f(x)]+2\lim\limits_{x \to a}[g(x)]=2+2(-4)=2-8=-6\\ (b)\lim\limits_{x \to a}[h(x)-3g(x)+1]=\lim\limits_{x \to a}h(x)-3\lim\limits_{x \to a}g(x)+\lim\limits_{x \to a}(1)=0-3(-4)+1=12+1=13\\ (c)\lim\limits_{x \to a}[f(x)g(x)]=\lim\limits_{x \to a}[f(x)]*\lim\limits_{x \to a}[g(x)]=2*(-4)=-8\\ (d)\lim\limits_{x \to a}[g(x)]^{2}=[\lim\limits_{x \to a}g(x)]^{2}=(-4)^{2}=16\\ (e)\lim\limits_{x \to a}\sqrt[3] [6+f(x)]=\sqrt[3] [6+\lim\limits_{x \to a}[f(x)]=\sqrt[3] [6+2]=\sqrt[3] [8]=2\\ (f)\lim\limits_{x \to a}\frac{2}{g(x)}=\frac{2}{\lim\limits_{x \to a}[g(x)]}=\frac{2}{-4}=-\frac{1}{2}\\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.