Answer
$\lim\limits_{x \to 6^{+}}\frac{y+6}{y²-36}$ = +$\infty$
Work Step by Step
y² - 36 = (y + 6)(y - 6), so:
$\frac{y+6}{y²-36}$ = $\frac{1}{y-6}$
$\lim\limits_{x \to 6^{+}}\frac{y+6}{y²-36}$ = $\lim\limits_{x \to 6^{+}}\frac{1}{y-6}$ = $\frac{1}{0^{+}}$ = +$\infty$