Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.2 Computing Limits - Exercises Set 1.2 - Page 69: 13

Answer

$\lim\limits_{x \to 2}\frac{t³ + 3t² - 12t + 4}{t³ - 4t}$ = $\frac{3}{2}$

Work Step by Step

$t³ + 3t² - 12t + 4 = (t - 2)(t² + 5t - 2)$ $t³ - 4t = t(t + 2)(t - 2)$, so: $\frac{t³ + 3t² - 12t + 4}{t³ - 4t}$ = $\frac{(t - 2)(t² + 5t - 2)}{t(t + 2)(t - 2)}$ = $\frac{(t² + 5t - 2)}{t(t + 2)}$ $\lim\limits_{x \to 2}\frac{t³ + 3t² - 12t + 4}{t³ - 4t}$ = $\lim\limits_{x \to 2}\frac{(t² + 5t - 2)}{t(t + 2)}$ = $\frac{2²+5\times2-2}{2(2+2)}$ = $\frac{12}{8}$ = $\frac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.