Answer
$\lim\limits_{x\to3}\sqrt{x+1}=2.$
Work Step by Step
By Theorem $1.4: \lim\limits_{x\to c}\sqrt[n]{x}=\sqrt[n]{c}.$
By Theorem $1.5: \lim\limits_{x\to c}(f(g(x)))=f(\lim\limits_{x\to c}g(x)).$
$\lim\limits_{x\to3}\sqrt{x+1}=\sqrt{\lim\limits_{x\to3}(x+1)}=\sqrt{3+1}=2.$