Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - 1.3 Exercises - Page 67: 53

Answer

$\lim\limits_{x \to 4}\dfrac{\sqrt{x+5}-3}{x-4}=\dfrac{1}{6}$

Work Step by Step

$\lim\limits_{x \to 4}\dfrac{\sqrt{x+5}-3}{x-4}$ Applying direct substitution immediately will result in an indeterminate form. Multiply the fraction by $\dfrac{\sqrt{x+5}+3}{\sqrt{x+5}+3}$ and simplify: $\lim\limits_{x \to 4}\Big(\dfrac{\sqrt{x+5}-3}{x-4}\Big)\Big(\dfrac{\sqrt{x+5}+3}{\sqrt{x+5}+3}\Big)=\lim\limits_{x \to 4}\dfrac{(\sqrt{x+5})^{2}-3^{2}}{(x-4)(\sqrt{x+5}+3)}$ $...=\lim\limits_{x \to 4}\dfrac{x+5-9}{(x-4)(\sqrt{x+5}+3)}=\lim\limits_{x \to 4}\dfrac{x-4}{(x-4)(\sqrt{x+5}+3)}=...$ $...=\lim\limits_{x \to 4}\dfrac{1}{\sqrt{x+5}+3}$ Now, apply direct substitution to evaluate the limit: $\lim\limits_{x \to 4}\dfrac{1}{\sqrt{x+5}+3}=\dfrac{1}{\sqrt{4+5}+3}=\dfrac{1}{3+3}=\dfrac{1}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.