Answer
$\lim\limits_{x\to0^-}(1+\dfrac{1}{x})=-\infty.$
Work Step by Step
$\lim\limits_{x\to0^-}(1+\dfrac{1}{x})\to$
$\lim\limits_{x\to0^-}(1)=1.$
$\lim\limits_{x\to0^-}\dfrac{1}{x}=\dfrac{1}{0^-}=-\infty.$
By Theorem $1.15:$
$\lim\limits_{x\to0^-}(1+\dfrac{1}{x})=-\infty.$