Answer
$\log_{3}30=\dfrac{\ln30}{\ln3}\approx3.095903$
Work Step by Step
$\log_{3}30$
Apply the change of base formula, which is $\log_{b}x=\dfrac{\log_{a}x}{\log_{a}b}$, to express the given $\log$ in terms of the natural logarithm:
$\log_{3}30=\dfrac{\ln30}{\ln3}$
Evaluate using a calculator:
$\dfrac{\ln30}{\ln3}\approx3.095903$