Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.3 Inverse, Exponential, and Logarithmic Functions - 1.3 Exercises - Page 37: 57

Answer

$$451{\text{ years}}$$

Work Step by Step

$$\eqalign{ & m\left( t \right) = 100{e^{ - t/650}} \cr & m = 50{\text{grams}} \cr & {\text{Let }}m\left( t \right) = 50 \cr & 50 = 100{e^{ - t/650}} \cr & {\text{Solve for }}t \cr & \frac{{50}}{{100}} = {e^{ - t/650}} \cr & 0.5 = {e^{ - t/650}} \cr & \ln \left( {0.5} \right) = \ln {e^{ - t/650}} \cr & \ln \left( {0.5} \right) = - \frac{t}{{650}} \cr & t = - 650\ln \left( {0.5} \right) \cr & t = 450.5456674 \cr & t \approx 451{\text{ years}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.