Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.3 Inverse, Exponential, and Logarithmic Functions - 1.3 Exercises - Page 37: 76

Answer

For $x\in(-\infty,4]$ the inverse and its domain are: $f^{-1}(x)=-\sqrt x+4$ $D_{f^{-1}}=[0,\infty)$ For $x\in[4,\infty)$ the inverse and its domain are: $f^{-1}(x)=\sqrt x+4$ $D_{f^{-1}}=[0,\infty)$

Work Step by Step

We are given the function: $f(x)=(x-4)^2$ The domain of and range of $f$ are: $D_f=(-\infty,\infty)$ $R_f=[0,\infty)$ Determine the inverse $f^{-1}$: $y=(x-4)^2$ $x=(y-4)^2$ (we switched $x$ and $y$) $\sqrt x=\pm (y-4)$ $\sqrt x=-(y-4)\Rightarrow \sqrt x=-y+4\Rightarrow y=-\sqrt x+4$ $\sqrt x=y-4\Rightarrow y=\sqrt x+4$ There are two inverses: For $x\in(-\infty,4]$ the inverse and its domain are: $f^{-1}(x)=-\sqrt x+4$ $D_{f^{-1}}=[0,\infty)$ For $x\in[4,\infty)$ the inverse and its domain are: $f^{-1}(x)=\sqrt x+4$ $D_{f^{-1}}=[0,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.