Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.3 Inverse, Exponential, and Logarithmic Functions - 1.3 Exercises - Page 37: 77

Answer

For $x\in(-\infty,0]$ the inverse and its domain are: $f^{-1}(x)=-\sqrt{\dfrac{2-2x}{x}}$ $D_{f^{-1}}=(0,1]$ For $x\in[0,\infty)$ the inverse and its domain are: $f^{-1}(x)=\sqrt{\dfrac{2-2x}{x}}$ $D_{f^{-1}}=(0,1]$

Work Step by Step

We are given the function: $f(x)=\dfrac{2}{x^2+2}$ The domain of and range of $f$ are: $D_f=(-\infty,\infty)$ $R_f=(0,1]$ Determine the inverse $f^{-1}$: $y=\dfrac{2}{x^2+2}$ $x=\dfrac{2}{y^2+2}$ (we switched $x$ and $y$) $x(y^2+2)=2$ $y^2+2=\dfrac{2}{x}$ $y^2=\dfrac{2}{x}-2$ $y^2=\dfrac{2-2x}{x}$ $y=\pm\sqrt{\dfrac{2-2x}{x}}$ There are two inverses: For $x\in(-\infty,0]$ the inverse and its domain are: $f^{-1}(x)=-\sqrt{\dfrac{2-2x}{x}}$ $D_{f^{-1}}=(0,1]$ For $x\in[0,\infty)$ the inverse and its domain are: $f^{-1}(x)=\sqrt{\dfrac{2-2x}{x}}$ $D_{f^{-1}}=(0,1]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.