Answer
$f^{-1}(x)=\sqrt[3] x-1$
$D_{f^{-1}}=(-\infty,\infty)$
$R_{f^{-1}}=(-\infty,\infty)$
Work Step by Step
We are given the function:
$f(x)=(x+1)^3$
The domain of and range of $f$ are:
$D_f=(-\infty,\infty)$
$R_f=(-\infty,\infty)$
Determine the inverse $f^{-1}$:
$y=(x+1)^3$
$x=(y+1)^3$ (we switched $x$ and $y$)
$\sqrt[3] x=y+1$
$y=\sqrt[3] x-1$
$f^{-1}(x)=\sqrt[3] x-1$
The domain of and range of $f^{-1}$ are:
$D_{f^{-1}}=(-\infty,\infty)$
$R_{f^{-1}}=(-\infty,\infty)$