Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.3 Inverse, Exponential, and Logarithmic Functions - 1.3 Exercises - Page 37: 78

Answer

$f^{-1}(x)=\dfrac{2x}{2-x}$ $D_{f^{-1}}=(-\infty,2)\cup(2,\infty)$

Work Step by Step

We are given the function: $f(x)=\dfrac{2x}{x+2}$ The domain of $f$ is: $D_f=(-\infty,-2)\cup(-2,\infty)$ Determine the inverse $f^{-1}$: $y=\dfrac{2x}{x+2}$ $x=\dfrac{2y}{y+2}$ (we switched $x$ and $y$) $x(y+2)=2y$ $xy+2x=2y$ $2x=2y-xy$ $2x=y(2-x)$ $y=\dfrac{2x}{2-x}$ $f^{-1}(x)=\dfrac{2x}{2-x}$ The domain of the inverse is: $D_{f^{-1}}=(-\infty,2)\cup(2,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.