Answer
$\color{blue}{\dfrac{2m+3}{4m+3}}$
Work Step by Step
Factor the numerator and the denominator then cancel the common factors to obtain:
$\require{cancel}
=\dfrac{(4m-3)(2m+3)}{(4m-3)(4m+3)}
\\=\dfrac{\cancel{(4m-3)}(2m+3)}{\cancel{(4m-3)}(4m+3)}
\\=\color{blue}{\dfrac{2m+3}{4m+3}}$