Answer
$\color{blue}{\dfrac{25p^2}{9}}$
Work Step by Step
Use the rule $\dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c}$ to obtain:
$\dfrac{15p^3}{9p^2} \times \dfrac{10p^2}{6p}$
Cancel common factors, then multiply to obtain:
$\require{cancel}
=\dfrac{\cancel{15}^5p^3}{\cancel{9}^3\cancel{p^2}} \times \dfrac{10\cancel{p^2}}{6p}
\\=\dfrac{5p^3}{3} \times \dfrac{10}{6p}
\\=\dfrac{5\cancel{p^3}p^2}{3} \times \dfrac{\cancel{10}5}{\cancel{6}3\cancel{p}}
\\=\color{blue}{\dfrac{25p^2}{9}}$