Answer
$\color{blue}{\sqrt[3]{3}}$
Work Step by Step
Simplify each radical.
Factor the radicand so that one factor is a perfect cube, then bring out the cube root of the perfect cube factor to obtain:
$=2\sqrt[3]{3}+\sqrt[3]{8(3)} -\sqrt[3]{27(3)}
\\=\sqrt[3]{3} + \sqrt[3]{2^3(3)}-\sqrt[3]{3^3(3)}
\\=2\sqrt[3]{3}+2\sqrt[3]{3}-3\sqrt[3]{3}$
Combine like terms to obtain:
$=(2+2-3)\sqrt[3]{3}
\\=\color{blue}{\sqrt[3]{3}}$