Answer
$\color{blue}{\dfrac{x\sqrt[3]{2}-\sqrt[3]{5}}{x^3}}$
Work Step by Step
Simplify each radical term to obtain:
$=\sqrt[3]{\dfrac{2}{(x^2)^3}}-\sqrt[3]{\dfrac{5}{(x^3)^3}}
\\=\dfrac{\sqrt[3]{2}}{x^2}-\dfrac{\sqrt[3]{5}}{x^3}$
Make the terms similar using their LCD of $x^3$ to obtain:
$=\dfrac{x\sqrt[3]{2}}{x^2(x)}-\dfrac{\sqrt[3]{5}}{x^3}
\\=\dfrac{x\sqrt[3]{2}}{x^3} - \dfrac{\sqrt[3]{5}}{x^3}$
Subtract the numerators and retain the denominator to obtain:
$=\color{blue}{\dfrac{x\sqrt[3]{2}-\sqrt[3]{5}}{x^3}}$