Answer
$\color{blue}{3\sqrt[3]{4}}$
Work Step by Step
Simplify each radical.
Factor the radicand so that one factor is a perfect cube, then bring out the cube root of the perfect cube factor to obtain:
$=\sqrt[3]{8(4)}-5\sqrt[3]{4} +2\sqrt[3]{27(4)}
\\=\sqrt[3]{2^3(3)} -5 \sqrt[3]{4}+2\sqrt[3]{3^3(4)}
\\=2\sqrt[3]{4}-5\sqrt[3]{4}+2(3)\sqrt[3]{3}
\\=2\sqrt[3]{4}-5\sqrt[3]{4}+6\sqrt[3]{3}$
Combine like terms to obtain:
$=(2-5+6)\sqrt[3]{4}
\\=\color{blue}{3\sqrt[3]{4}}$