Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.2 - Exponents and Radicals - 1.2 Exercises - Page 23: 67

Answer

$a)$ $4st^{4}$ $b)$ $\dfrac{4x}{y}$

Work Step by Step

$a)$ $\dfrac{(8s^{3}t^{3})^{2/3}}{(s^{4}t^{-8})^{1/4}}$ Evaluate the powers in the numerator and the denominator: $\dfrac{(8s^{3}t^{3})^{2/3}}{(s^{4}t^{-8})^{1/4}}=\dfrac{(8^{2/3})s^{2}t^{2}}{st^{-2}}=\dfrac{(\sqrt[3]{8^{2}})s^{2}t^{2}}{st^{-2}}=\dfrac{4s^{2}t^{2}}{st^{-2}}=...$ Evaluate the division: $...=4s^{2-1}t^{2-(-2)}=4st^{4}$ $b)$ $\dfrac{(32x^{5}y^{-3/2})^{2/5}}{(x^{5/3}y^{2/3})^{3/5}}$ Evaluate the powers in the numerator and the denominator: $\dfrac{(32x^{5}y^{-3/2})^{2/5}}{(x^{5/3}y^{2/3})^{3/5}}=\dfrac{(32^{2/5})x^{2}y^{-3/5}}{xy^{2/5}}=\dfrac{(\sqrt[5]{32^{2}})x^{2}y^{-3/5}}{xy^{2/5}}=...$ $...=\dfrac{4x^{2}y^{-3/5}}{xy^{2/5}}=...$ Evaluate the division and simplify: $...=4x^{2-1}y^{-3/5-2/5}=4xy^{-5/5}=4xy^{-1}=\dfrac{4x}{y}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.