Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.2 - Exponents and Radicals - 1.2 Exercises - Page 23: 80

Answer

$a)$ $4\sqrt{3}$ $b)$ $\dfrac{2\sqrt{15}}{5}$ $c)$ $\dfrac{8\sqrt[3]{5}}{5}$

Work Step by Step

$a)$ $\dfrac{12}{\sqrt{3}}$ Multiply the numerator and the denominator by $\sqrt{3}$ and simplify: $\dfrac{12}{\sqrt{3}}=\dfrac{12}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{12\sqrt{3}}{\sqrt{3^{2}}}=\dfrac{12\sqrt{3}}{3}=4\sqrt{3}$ $b)$ $\sqrt{\dfrac{12}{5}}$ Rewrite as $\dfrac{\sqrt{12}}{\sqrt{5}}$: $\sqrt{\dfrac{12}{5}}=\dfrac{\sqrt{12}}{\sqrt{5}}=...$ Multiply the numerator and the denominator by $\sqrt{5}$ and simplify: $...=\dfrac{\sqrt{12}}{\sqrt{5}}\cdot\dfrac{\sqrt{5}}{\sqrt{5}}=\dfrac{\sqrt{60}}{\sqrt{5^{2}}}=\dfrac{\sqrt{15\cdot4}}{5}=\dfrac{2\sqrt{15}}{5}$ $c)$ $\dfrac{8}{\sqrt[3]{5^{2}}}$ Multiply the numerator and the denominator by $\sqrt[3]{5}$ and simplify: $\dfrac{8}{\sqrt[3]{5^{2}}}=\dfrac{8}{\sqrt[3]{5^{2}}}\cdot\dfrac{\sqrt[3]{5}}{\sqrt[3]{5}}=\dfrac{8\sqrt[3]{5}}{\sqrt[3]{5^{3}}}=\dfrac{8\sqrt[3]{5}}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.