Answer
$7.4311 \times 10^{-14}$
Work Step by Step
$\frac{(0.0000162)(0.01582)}{(594,621,000)(0.0058)}$
First we need to convert these into scientific notation.
$\frac{(1.62 \times 10^{-5})(1.582 \times 10^{-3})}{(5.94,621 \times 10^8)(5.8 \times 10^{-3})}$
Then we multiply the numerators together. Remember when we multiply the exponents we add them together.
$\frac{(2.56284 \times 10^{-7})}{(5.94,621 \times 10^8)(5.8 \times 10^{-3})}$
Then we multiply the denominators together.
$\frac{(2.56284 \times 10^{-7})}{(34.48802 \times 10^5)}$
$\frac{(2.56284 \times 10^{-7})}{(3.448802 \times 10^6)}$
Then we divide numerator by denominator. With the exponents, remember when dividing we subtract.
$0.74311 \times 10^{-13}$
$7.4311 \times 10^{-14}$