Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.2 - Exponents and Radicals - 1.2 Exercises - Page 23: 96

Answer

(a) $2^{1/2}$ (b) $(\frac{1}{2})^{1/3}$ (c) $7^{1/4}$ (d) $\sqrt 3$

Work Step by Step

(a) $2^{1/2}=2^{3/6}=\sqrt[6]{2^3}=\sqrt[6] 8$; $2^{1/3}=2^{2/6}=\sqrt[6]{2^2}=\sqrt[6] 4$ $$\sqrt[6]8>\sqrt[6]4 \Rightarrow 2^{1/2}>2^{1/3}$$ (b) $(\frac{1}{2})^{1/2}$=$\frac{1^{1/2}}{2^{1/2}}$=$\frac{1}{2^{1/2}}$ $(\frac{1}{2})^{1/3}$=$\frac{1^{1/3}}{2^{1/3}}$=$\frac{1}{2^{1/3}}$ We use the result from part a): $$2^{1/2}>2^{1/3}\Rightarrow \frac{1}{2^{1/3}}>\frac{1}{2^{1/2}}$$ (c) Make the exponents of $7^{1/4}$ and $4^{1/3}$ be like fractions with the same denominator: $7^{\frac {1}{4}}=7^{\frac {3}{12}}$ $ 4^{\frac {1}{3}}=4^{\frac {4}{12}}$ Now we can transform the powers into radicals: $7^{\frac {3}{12}}=\sqrt[12] {7^3}=\sqrt[12] {343}$ $4^{\frac {4}{12}}=\sqrt[12] {4^4}=\sqrt[12] {256}$ Since both radicals are 12th roots, the largest radical is the one with the largest number inside the root: $$\sqrt[12] {343}>\sqrt[12] {256}, 7^{\frac {1}{4}}>4^{\frac {1}{3}}$$ (d) $\sqrt[3] 5=5^{\frac{1}{3}}=5^{2/6}=\sqrt[6]{5^2}=\sqrt[6]{25}$; $\sqrt 3$=$3^{\frac{1}{2}}=3^{3/6}=\sqrt[6]{3^3}=\sqrt[6]{27}$ Since both radicals are 6th roots, the largest radical is the one with the largest number inside the root: $$\sqrt[6] {27}>\sqrt[6] {25}\Rightarrow \sqrt 3>\sqrt[3] 5$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.