Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.2 - Exponents and Radicals - 1.2 Exercises - Page 23: 69

Answer

$a)$ $\dfrac{x^{4}}{y}$ $b)$ $\dfrac{8y^{8}}{x^{2}}$

Work Step by Step

$a)$ $\Big(\dfrac{x^{3/2}}{y^{-1/2}}\Big)^{4}\Big(\dfrac{x^{-2}}{y^{3}}\Big)$ First, evaluate the power: $\Big(\dfrac{x^{3/2}}{y^{-1/2}}\Big)^{4}\Big(\dfrac{x^{-2}}{y^{3}}\Big)=\Big(\dfrac{x^{6}}{y^{-2}}\Big)\Big(\dfrac{x^{-2}}{y^{3}}\Big)=...$ Evaluate the product of fractions and simplify if possible: $...=\dfrac{x^{6+(-2)}}{y^{-2+3}}=\dfrac{x^{4}}{y}$ $b)$ $\Big(\dfrac{4y^{3}z^{2/3}}{x^{1/2}}\Big)^{2}\Big(\dfrac{x^{-3}y^{6}}{8z^{4}}\Big)^{1/3}$ Evaluate both powers: $\Big(\dfrac{4y^{3}z^{2/3}}{x^{1/2}}\Big)^{2}\Big(\dfrac{x^{-3}y^{6}}{8z^{4}}\Big)^{1/3}=\Big(\dfrac{16y^{6}z^{4/3}}{x}\Big)\Big(\dfrac{x^{-1}y^{2}}{2z^{4/3}}\Big)=...$ Evaluate the product: $...=\dfrac{16x^{-1}y^{6+2}z^{4/3}}{2xz^{4/3}}=\dfrac{16x^{-1}y^{8}z^{4/3}}{2xz^{4/3}}=...$ Evaluate the division and simplify if possible: $...=8x^{-1-1}y^{8}z^{4/3-4/3}=8x^{-2}y^{8}=\dfrac{8y^{8}}{x^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.