Answer
$\dfrac{(3.542\times10^{-6})^{9}}{(5.05\times10^{4})^{12}}=3.19\times10^{-106}$
Work Step by Step
$\dfrac{(3.542\times10^{-6})^{9}}{(5.05\times10^{4})^{12}}$
Evaluate the powers in the numerator and in the denominator:
$\dfrac{(3.542\times10^{-6})^{9}}{(5.05\times10^{4})^{12}}=\dfrac{(3.542)^{9}\times10^{-54}}{(5.05)^{12}\times10^{48}}...$
$...=\dfrac{87747.957\times10^{-54}}{275103767.122\times10^{48}}=...$
Evaluate the division:
$...=\Big(\dfrac{87747.957}{275103767.122}\Big)\times10^{-54-48}=0.000319\times10^{-102}=...$
$...=3.19\times10^{-106}$