Answer
$\dfrac{8}{3x}; x \ne 0,2$
Work Step by Step
The given expression is equivalent to:
$=\dfrac{4x-8}{-3x} \cdot \dfrac{12}{-6x+12}$
Factor each polynomial completely to obtain:
$=\dfrac{2(2)(x-2)}{-3(x)} \cdot \dfrac{2(2)(3)}{-6(x-2)}
\\=\dfrac{2(2)(x-2)}{-3(x)} \cdot \dfrac{2(2)(3)}{-2(3)(x-2)}$
Cancel the common factors to obtain:
$\require{cancel}
\\\\=\dfrac{2\cancel{(2)}\cancel{(x-2)}}{-3(x)} \cdot \dfrac{2(2)\cancel{(3)}}{-\cancel{2}\cancel{(3)}\cancel{(x-2)}}
\\=\dfrac{2(2)(2)}{-3(x)(-1)}
\\=\dfrac{8}{3x}; x \ne 0,2$