Answer
$\dfrac{-3x-35}{(x+5)(x-5)}; x \ne -5, 5$
Work Step by Step
The LCM of $x+5$ and $x-5$ is $(x+5)(x-5)$.
Use the LCM as the expressions' LCD to make them similar:
$=\dfrac{2\color{blue}{(x-5)}}{(x+5)\color{blue}{(x-5)}} -\dfrac{5\color{blue}{(x+5)}}{(x-5)\color{blue}{(x+5)}}
\\=\dfrac{2x-10}{(x+5)(x-5)}-\dfrac{5x+25}{(x-5)(x+5)}$
The expressions are similar so subtract the numerators and copy the denominator to obtain:
$=\dfrac{2x-10-(5x+25)}{(x+5)(x-5)}
\\=\dfrac{2x-10-5x-25}{(x+5)(x-5)}
\\=\dfrac{-3x-35}{(x+5)(x-5)}; x \ne -5, 5$