Answer
$$\frac{81x^{20}}{y^{32}}$$
Work Step by Step
$$(\frac{x^{-5}y^{8}}{3})^{-4}$$
Recall the power rule: $(a^{m})^{n}=a^{mn}$
Thus,
$=\frac{x^{-5\cdot-4}y^{8\cdot-4}}{3^{-4}}$
$=\frac{x^{20}y^{-32}}{3^{-4}}$
Recall the negative exponent rule: $a^{−n}=\frac{1}{a^{n}}$ and $\frac{1}{a^{-n}} = a^{n}$
Thus,
$=\frac{x^{20}y^{-32}}{3^{-4}}$
$=\frac{x^{20}3^{4}}{y^{32}}$
$=\frac{81x^{20}}{y^{32}}$