Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 1 - Section 1.6 - Properties of Integral Exponents - Exercise Set - Page 80: 118

Answer

$$8x^{3}y^{9}$$

Work Step by Step

$$\frac{7x^3}{y^{-9}}+ (\frac{x^{-1}}{y^3})^{-3}$$ Simplify the first term: $\frac{7x^3}{y^{-9}}$ Recall the negative exponent rule: $a^{−n}=\frac{1}{a^{n}}$ and $\frac{1}{a^{-n}} = a^{n}$ Thus, $$\frac{7x^3}{y^{-9}} = 7x^{3}y^{9}$$ Simplify the second term: $(\frac{x^{-1}}{y^3})^{-3}$ Recall the power rule: $(a^{m})^{n}=a^{mn}$ Thus, $$(\frac{x^{-1}}{y^3})^{-3} = \frac{x^{-1\cdot-3}}{y^{3\cdot-3}} = \frac{x^{3}}{y^{-9}}$$ Recall the negative exponent rule: $a^{−n}=\frac{1}{a^{n}}$ and $\frac{1}{a^{-n}} = a^{n}$ Thus, $$\frac{x^{3}}{y^{-9}} = x^{3}y^{9}$$ Rewrite the equation: $$7x^{3}y^{9} + x^{3}y^{9} = 8x^{3}y^{9}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.