Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.2 Exercises - Page 112: 15

Answer

$ABC$ is an invertible matrix.

Work Step by Step

Let $A$,$B$, and $C$ be invertible $n$$\times$$n$ matrices. Let $D=C^{-1}B^{-1}A^{-1}$ $(ABC)D$=$(ABC)(C^{-1}B^{-1}A^{-1})$ $(ABC)D$=$(AB)(CC^{-1})(B^{-1}A^{-1})$ $(ABC)D$=$(AB)(I)(B^{-1}A^{-1})$ $(ABC)D$=$(AB)(B^{-1}A^{-1})$ $(ABC)D$=$(A)(BB^{-1})(A^{-1})$ $(ABC)D$=$(A)(A^{-1})$ $(ABC)D$=$I$ $D(ABC)$=$(C^{-1}B^{-1}A^{-1})(ABC)$ $D(ABC)$=$C^{-1}B^{-1}(A^{-1}A)BC$ $D(ABC)$=$C^{-1}B^{-1}IBC$ $D(ABC)$=$C^{-1}B^{-1}BC$ $D(ABC)$=$C^{-1}(B^{-1}B)C$ $D(ABC)$=$C^{-1}IC$ $D(ABC)$=$C^{-1}C$ $D(ABC)$=$I$ Since $(ABC)D$=$I$ and $D(ABC)$=$I$, $ABC$ is invertible.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.