Answer
See solution
Work Step by Step
a) $row_i(A)=row_i(IA)$ is the $ith$ row of matrix $A$.
Matrix multiplication $row_i(I)\cdot A$ is the $ith$ row of the identity matrix, whose $ith$ term is 1 and all other terms are 0. Thus, the product is the ith row of A.
Also, $row_i(IA)=row_i(I)\cdot A$
For b and c, $A=\begin{bmatrix}
row_1(A)\\
row_2(A)\\
row_3(A)\\
\end{bmatrix}$
b) $EA=\begin{bmatrix}
0&1&0\\
1&0&0\\
0&0&1\\
\end{bmatrix}\begin{bmatrix}
row_1(A)\\
row_2(A)\\
row_3(A)\\
\end{bmatrix}=\begin{bmatrix}
row_2(A)\\
row_1(A)\\
row_3(A)\\
\end{bmatrix}$
c) $EA=\begin{bmatrix}
1&0&0\\
0&1&0\\
0&0&5\\
\end{bmatrix}\begin{bmatrix}
row_1(A)\\
row_2(A)\\
row_3(A)\\
\end{bmatrix}=\begin{bmatrix}
row_1(A)\\
row_2(A)\\
5*row_3(A)\\
\end{bmatrix}$