Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.2 Exercises - Page 112: 31

Answer

$A^{-1}=\left[\begin{array}{rrrrrr} 8 & 3 & 1\\ 10 & 4 & 1\\ 7/2 & 3/2 & 1/2 \end{array}\right]$

Work Step by Step

ALGORITHM FOR FINDING $A^{-1}$ Row reduce the augmented matrix $[A\ I]$. If $A$ is row equivalent to $I$, then $[A\ I]$ is row equivalent to $[I\ A^{-1}]$. Otherwise, $A$ does not have an inverse. --- $\left[\begin{array}{llllll} 1 & 0 & -2 & 1 & 0 & 0\\ -3 & 1 & 4 & 0 & 1 & 0\\ 2 & -3 & 4 & 0 & 0 & 1 \end{array}\right]\left\{\begin{array}{l} .\\ +3R_{1}.\\ -2R_{1}. \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llllll} 1 & 0 & -2 & 1 & 0 & 0\\ 0 & 1 & -2 & 3 & 1 & 0\\ 0 & -3 & 8 & -2 & 0 & 1 \end{array}\right]\left\{\begin{array}{l} .\\ .\\ +3R_{2}. \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llllll} 1 & 0 & -2 & 1 & 0 & 0\\ 0 & 1 & -2 & 3 & 1 & 0\\ 0 & 0 & 2 & 7 & 3 & 1 \end{array}\right]\left\{\begin{array}{l} +R_{3}.\\ +R_{3}.\\ \div 2. \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llllll} 1 & 0 & 0 & 8 & 3 & 1\\ 0 & 1 & 0 & 10 & 4 & 1\\ 0 & 0 & 1 & 7/2 & 3/2 & 1/2 \end{array}\right]=[I\ A^{-1}]$. $A^{-1}=\left[\begin{array}{rrrrrr} 8 & 3 & 1\\ 10 & 4 & 1\\ 7/2 & 3/2 & 1/2 \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.