Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.2 Exercises - Page 112: 29

Answer

$A^{-1}=\left[\begin{array}{rrr} -7 & 2\\ 4 & -1 \end{array}\right]$

Work Step by Step

ALGORITHM FOR FINDING $A^{-1}$ Row reduce the augmented matrix $[A\ I]$. If $A$ is row equivalent to $I$, then $[A\ I]$ is row equivalent to $[I\ A^{-1}]$. Otherwise, $A$ does not have an inverse. --- $\left[\begin{array}{llll} 1 & 2 & 1 & 0\\ 4 & 7 & 0 & 1 \end{array}\right]\left\{\begin{array}{l} .\\ -4R_{1} \end{array}\right.\rightarrow\left[\begin{array}{llll} 1 & 2 & 1 & 0\\ 0 & -1 & -4 & 1 \end{array}\right]\left\{\begin{array}{l} +2R_{2}.\\ \times(-1) \end{array}\right.$ $\rightarrow\left[\begin{array}{llll} 1 & 0 & -7 & 2\\ 0 & 1 & 4 & -1 \end{array}\right]$= $[I\ A^{-1}]$. $A^{-1}=\left[\begin{array}{rrr} -7 & 2\\ 4 & -1 \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.