Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.2 Exercises - Page 112: 35

Answer

The third column of $A^{-1}$ is $\left[\begin{array}{l} 3\\ -6\\ 4 \end{array}\right]$

Work Step by Step

Row reduce $[A \mathrm{e}_{3}]:$ $\left[\begin{array}{llll} -2 & -7 & -9 & 0\\ 2 & 5 & 6 & 0\\ 1 & 3 & 4 & 1 \end{array}\right]\left\{\begin{array}{l} \leftrightarrow R_{3}.\\ +R_{1}.\\ . \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llll} 1 & 3 & 4 & 1\\ 0 & -2 & -3 & 0\\ -2 & -7 & -9 & 0 \end{array}\right]\left\{\begin{array}{l} .\\ .\\ +2R_{1}. \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llll} 1 & 3 & 4 & 1\\ 0 & -2 & -3 & 0\\ 0 & -1 & -1 & 2 \end{array}\right]\left\{\begin{array}{l} .\\ -3R_{3}.\\ . \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llll} 1 & 3 & 4 & 1\\ 0 & 1 & 0 & -6\\ 0 & -1 & -1 & 2 \end{array}\right]\left\{\begin{array}{l} -3R_{2}.\\ .\\ +R_{2}. \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llll} 1 & 0 & 4 & 19\\ 0 & 1 & 0 & 6\\ 0 & 0 & -1 & -4 \end{array}\right]\left\{\begin{array}{l} +4R_{3}.\\ .\\ \times(-1). \end{array}\right.\rightarrow$ $\rightarrow\left[\begin{array}{llll} 1 & 0 & 0 & 3\\ 0 & 1 & 0 & 6\\ 0 & 0 & 1 & 4 \end{array}\right]$ = $[I\ e_{3}^{\prime}]$ The third column of $A^{-1}$ is $\left[\begin{array}{l} 3\\ -6\\ 4 \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.