Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.2 Exercises - Page 112: 25

Answer

See solution

Work Step by Step

$A=\begin{bmatrix} a&b\\ c&d\\ \end{bmatrix} $ $\begin{bmatrix} a&b\\ c&d\\ \end{bmatrix} $$\begin{bmatrix} d\\ -c\\ \end{bmatrix} $=$\begin{bmatrix} ad-bc\\ cd-dc\\ \end{bmatrix} $=$\begin{bmatrix} ad-bc\\ 0\\ \end{bmatrix} $ If $ad-bc=0$, the equation will be $\begin{bmatrix} a&b\\ c&d\\ \end{bmatrix} $$\begin{bmatrix} d\\ -c\\ \end{bmatrix} $=$\begin{bmatrix} 0\\ 0\\ \end{bmatrix} $ This means $\begin{bmatrix} d\\ -c\\ \end{bmatrix} $ is a solution to augmented matrix $\begin{bmatrix} a&b&0\\ c&d&0\\ \end{bmatrix} $ If $d\ne0$ and $c\ne0$, there is a nontrivial solution, which means the columns of A are linearly dependent, which means they can't have a pivot in each column, meaning A can't be reduced to the identity matrix, meaning it is not invertible.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.