Answer
See solution
Work Step by Step
$A=\begin{bmatrix}
a&b\\
c&d\\
\end{bmatrix}
$
$\begin{bmatrix}
a&b\\
c&d\\
\end{bmatrix}
$$\begin{bmatrix}
d\\
-c\\
\end{bmatrix}
$=$\begin{bmatrix}
ad-bc\\
cd-dc\\
\end{bmatrix}
$=$\begin{bmatrix}
ad-bc\\
0\\
\end{bmatrix}
$
If $ad-bc=0$, the equation will be
$\begin{bmatrix}
a&b\\
c&d\\
\end{bmatrix}
$$\begin{bmatrix}
d\\
-c\\
\end{bmatrix}
$=$\begin{bmatrix}
0\\
0\\
\end{bmatrix}
$
This means $\begin{bmatrix}
d\\
-c\\
\end{bmatrix}
$ is a solution to augmented matrix $\begin{bmatrix}
a&b&0\\
c&d&0\\
\end{bmatrix}
$
If $d\ne0$ and $c\ne0$, there is a nontrivial solution, which means the columns of A are linearly dependent, which means they can't have a pivot in each column, meaning A can't be reduced to the identity matrix, meaning it is not invertible.