Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.2 Exercises - Page 112: 20

Answer

$ a.\quad$B is an invertible matrix. $b.\quad X=(B^{-1}+A)^{-1}\cdot A$

Work Step by Step

$(a)$ Multiplying the equation (3) with $X$ from the left, obtaining $X(A-AX)^{-1}=XX^{-1}B$ $X(A-AX)^{-1}=I\cdot B$ $X(A-AX)^{-1}=B$ The LHS is a product of X, an invertible matrix, and $(A-AX)^{-1}$, also an invertible matrix. By theorem 6, the product of invertible matrices is also an invertible matrix. Therefore, B is an invertible matrix. $(b)$ Invert both sides of (3) (both sides are invertible) $[(A-AX)^{-1}]^{-1}=[X^{-1}B]^{-1}$ $A-AX=B^{-1}\cdot(X^{-1})^{-1}$ $A-AX=B^{-1}\cdot X$ ... add $AX$ to both sides, $A=B^{-1}\cdot X+AX$ ... apply the right-distrtibutive property (Th.2) $A=(B^{-1}+A)X$ $A$ is invertible, so the product $(B^{-1}+A)X$ is invertible $X $ and $A$ i are invertible, so the factor $(B^{-1}+A)$ must be invertible. Multiply both sides of the last equation, from the left, with $(B^{-1}+A)^{-1}$. $(B^{-1}+A)^{-1}\cdot A=(B^{-1}+A)^{-1}\cdot(B^{-1}+A)X$ $(B^{-1}+A)^{-1}\cdot A=I\cdot X$ $(B^{-1}+A)^{-1}\cdot A=X$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.