Answer
See Solution
Work Step by Step
$\begin{bmatrix}
1 & 0 & 0\\
1 & 1 & 0\\
1 & 1 & 1\\
\end{bmatrix}^{-1}=$$\begin{bmatrix}
1 & 0 & 0\\
-1 & 1 & 0\\
0 & -1 & 1\\
\end{bmatrix}$
$\begin{bmatrix}
1 & 0 & 0&0\\
1 & 1 & 0&0\\
1 & 1 & 1&0\\
1&1&1&1
\end{bmatrix}^{-1}=$$\begin{bmatrix}
1 & 0 & 0&0\\
-1 & 1 & 0&0\\
0 & -1 & 1&0\\
0&0 & -1 & 1\\
\end{bmatrix}$
The inverse of a matrix in this form will be 1s on the major diagonal and -1 on the diagonal below the major diagonal
$a_{xx}$ where x is an integer will always be in the form $1*n-1*(n-1)$ because the number of 1s in one column is always one more than the number of 1s in the next column and the first column is multiplied by 1 and the next column is multilpied by -1 for a sum of products of 1.