Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.4 Trigonometric Functions and Their Inverse - 1.4 Exercises - Page 48: 36

Answer

$$1 + \sqrt 2 $$

Work Step by Step

$$\eqalign{ & \tan \left( {\frac{{3\pi }}{8}} \right) \cr & {\text{Rewrite }}\frac{{3\pi }}{8}{\text{ as }}\frac{1}{2}\left( {\frac{{3\pi }}{4}} \right),{\text{ then}} \cr & \tan \left( {\frac{{3\pi }}{8}} \right) = \tan \left[ {\frac{1}{2}\left( {\frac{{3\pi }}{4}} \right)} \right] \cr & {\text{Where tan}}\frac{\theta }{2} = \frac{{1 - \cos \theta }}{{\sin \theta }},{\text{ let }}\theta = \frac{{3\pi }}{4} \cr & \tan \left[ {\frac{1}{2}\left( {\frac{{3\pi }}{4}} \right)} \right] = \frac{{1 - \cos \left( {\frac{{3\pi }}{4}} \right)}}{{\sin \left( {\frac{{3\pi }}{4}} \right)}} \cr & {\text{Where }}\cos \left( {\frac{{3\pi }}{4}} \right) = - \frac{{\sqrt 2 }}{2}{\text{ and }}\sin \left( {\frac{{3\pi }}{4}} \right) =\frac{{\sqrt 2 }}{2} \cr & \tan \left( {\frac{{3\pi }}{8}} \right) = \frac{{1 - \left( { - \frac{{\sqrt 2 }}{2}} \right)}}{{\frac{{\sqrt 2 }}{2}}} \cr & {\text{Simplifying}} \cr & \tan \left( {\frac{{3\pi }}{8}} \right) = \frac{{2 - 2\left( { - \frac{{\sqrt 2 }}{2}} \right)}}{{2\left( {\frac{{\sqrt 2 }}{2}} \right)}} = \frac{{2 + \sqrt 2 }}{{\sqrt 2 }} \cr & \tan \left( {\frac{{3\pi }}{8}} \right) = \frac{2}{{\sqrt 2 }} + 1 \cr & \tan \left( {\frac{{3\pi }}{8}} \right) = 1 + \sqrt 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.