Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.4 Trigonometric Functions and Their Inverse - 1.4 Exercises - Page 48: 81

Answer

$${\sin ^{ - 1}}\left( {\frac{x}{6}} \right),{\text{ }}{\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {36 - {x^2}} }}} \right),{\text{ }}{\sec ^{ - 1}}\left( {\frac{6}{{\sqrt {36 - {x^2}} }}} \right)$$

Work Step by Step

$$\eqalign{ & {\text{From the given triangle we can calculate the adjacent side using}} \cr & {\text{the pyhtagorean theorem:}} \cr & {\text{adjacent side}} = \sqrt {{{\left( 6 \right)}^2} - {x^2}} \cr & {\text{adjacent side}} = \sqrt {36 - {x^2}} \cr & \cr & {\text{Calculating }}\sin \theta ,{\text{ tan }}\theta {\text{ and sec}}\theta \cr & {\text{sin}}\theta = \frac{{{\text{opposite side}}}}{{{\text{hypotenuse}}}} \cr & {\text{sin}}\theta = \frac{x}{6} \Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{x}{6}} \right) \cr & {\text{tan}}\theta = \frac{{{\text{opposite side}}}}{{{\text{adjacent side}}}} \cr & \tan \theta = \frac{x}{{\sqrt {36 - {x^2}} }} \Rightarrow \theta = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {36 - {x^2}} }}} \right) \cr & {\text{sec}}\theta = \frac{{{\text{hypotenuse}}}}{{{\text{adjacent side}}}} \cr & \sec \theta = \frac{6}{{\sqrt {36 - {x^2}} }} \Rightarrow \theta = {\sec ^{ - 1}}\left( {\frac{6}{{\sqrt {36 - {x^2}} }}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.