Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.4 Trigonometric Functions and Their Inverse - 1.4 Exercises - Page 48: 42

Answer

$$x = \frac{1}{{12}}\pi ,{\text{ }}\frac{1}{4}\pi ,{\text{ }}\frac{3}{4}\pi ,{\text{ }}\frac{{17}}{{12}}\pi ,{\text{ }}\frac{{19}}{{12}}\pi $$

Work Step by Step

$$\eqalign{ & \sin 3x = \frac{{\sqrt 2 }}{2},\,\,\,\,\,0 \leqslant x < 2\pi \cr & {\text{In the interval }}\left[ {0,2\pi } \right),{\text{ sin}}\theta = \frac{{\sqrt 2 }}{2}{\text{ at }}\theta = \frac{\pi }{4}{\text{ and }}\theta = \frac{{3\pi }}{4} \cr & {\text{Therefore}}{\text{, Let }}\theta = 3x \cr & 3x = \frac{\pi }{4}{\text{ and }}3x = \frac{{3\pi }}{4} \cr & x = \frac{\pi }{{12}}{\text{ and }}x = \frac{\pi }{4} \cr & {\text{The general solution is}} \cr & x = \frac{\pi }{{12}} + \frac{{2n\pi }}{3}{\text{ and }}x = \frac{\pi }{4} + \frac{{2n\pi }}{3},{\text{ }}n{\text{ is an integer}} \cr & x = \left( {\frac{{1 + 8n}}{{12}}} \right)\pi {\text{ and }}x = \left( {\frac{{3 + 8n}}{{12}}} \right)\pi \cr & {\text{For }}n = 0 \cr & x = \frac{1}{{12}}\pi {\text{ and }}x = \frac{1}{4}\pi ,{\text{ }}\left( {{\text{are on the interval }}\,0 \leqslant x < 2\pi } \right) \cr & {\text{For }}n = 1 \cr & x = \frac{3}{4}\pi {\text{ and }}x = \frac{{11}}{{12}}\pi ,{\text{ }}\left( {{\text{are on the interval }}\,0 \leqslant x < 2\pi } \right) \cr & {\text{For }}n = 2 \cr & x = \frac{{17}}{{12}}\pi {\text{ and }}x = \frac{{19}}{{12}}\pi ,{\text{ }}\left( {{\text{are on the interval }}\,0 \leqslant x < 2\pi } \right) \cr & {\text{For }}n = 3 \cr & x = \frac{{25}}{{12}}\pi {\text{ and }}x = \frac{9}{4}\pi ,{\text{ }}\left( {{\text{are not on the interval }}\,0 \leqslant x < 2\pi } \right) \cr & {\text{The solutions are:}} \cr & x = \frac{1}{{12}}\pi ,{\text{ }}\frac{1}{4}\pi ,{\text{ }}\frac{3}{4}\pi ,{\text{ }}\frac{{17}}{{12}}\pi ,{\text{ }}\frac{{19}}{{12}}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.