Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.4 Trigonometric Functions and Their Inverse - 1.4 Exercises - Page 48: 72

Answer

$$ - \frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & {\tan ^{ - 1}}\left( {\tan \left( {3\pi /4} \right)} \right) \cr & {\text{We first calculate tan}}\left( {\frac{{3\pi }}{4}} \right),{\text{ }}\theta = \frac{{3\pi }}{4}{\text{ is in the quadrant II}}{\text{, then}} \cr & {\text{tan}}\left( {\frac{{3\pi }}{4}} \right) = - 1 \cr & {\tan ^{ - 1}}\left( {\tan \left( {3\pi /4} \right)} \right) = {\tan ^{ - 1}}\left( { - 1} \right) \cr & {\text{The range of the inverse function tangent is }} - \frac{\pi }{2} < x < \frac{\pi }{2} \cr & {\text{Then for }}{\tan ^{ - 1}}\left( \theta \right){\text{ the value of }}\theta {\text{ is in }} - \frac{\pi }{2} < x < \frac{\pi }{2},{\text{ so}} \cr & {\tan ^{ - 1}}\left( { - 1} \right) = - \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.