Answer
\[cscx = \frac{1}{{\sin x}}\,\,,\,secx = \frac{1}{{\cos x}}\,\,,\,\,\tan x = \frac{{\sin x}}{{\cos x}}\,\,,\,\cot x = \frac{{\cos x}}{{\sin x}}\]
Work Step by Step
\[\begin{gathered}
\operatorname{Csc} \,x\,is\,the\,reciprocal\,ratio\,to\,\sin x. \hfill \\
\hfill \\
cscx = \frac{1}{{\sin x}} \hfill \\
\hfill \\
\sec \,x\,is\,the\,\,\,reciprocal\,ratio\,to\,\,\cos \,x. \hfill \\
\hfill \\
secx = \frac{1}{{\cos x}} \hfill \\
\hfill \\
\tan x\,\,\,is\,the\,\,ratio\,of\,\sin x\,to\,\cos x. \hfill \\
\hfill \\
\tan x = \frac{{\sin x}}{{\cos x}} \hfill \\
\hfill \\
\cot \,x\,is\,the\,reciprocal\,ratio\,to\,\tan \,x. \hfill \\
\hfill \\
\cot x = \frac{{\cos x}}{{\sin x}} \hfill \\
\end{gathered} \]