Answer
$\displaystyle \frac{h^{1/3}t^{1/5}}{k^{2/5}}$
Work Step by Step
$ \displaystyle \frac{k^{-3/5}\cdot h^{-1/3}\cdot t^{2/5}}{k^{-1/5}\cdot h^{-2/3}\cdot t^{1/5}}\qquad$ ....... use $\displaystyle \frac{a^{m}}{a^{n}}=a^{m-n}$
$=k^{-3/5-(-1/5)}\cdot h^{-1/3-(-2/3)}\cdot t^{2/5-1/5}$
... simplify exponents
$=k^{-2/5}h^{1/3}t^{1/5}\qquad$ ....... use $a^{-n}=\displaystyle \frac{1}{a^{n}}=(\frac{1}{a})^{n}$
$= \displaystyle \frac{h^{1/3}t^{1/5}}{k^{2/5}}$