Answer
$\displaystyle \frac{m^{3}p}{n}$
Work Step by Step
$\displaystyle \frac{m^{7/3}\cdot n^{-2/5}.\cdot p^{3/8}}{m^{-2/3}\cdot n^{3/5}p^{-5/8}}=\qquad$ ....... use $\displaystyle \frac{a^{m}}{a^{n}}=a^{m-n}$
$=m^{7/3-(-2/3)}\cdot n^{-2/5-(3/5)}\cdot p^{3/8-(-5/8)}$
... simplify exponents
$=m^{9/3}n^{-5/5}p^{8/8}$
$=m^{3}n^{-1}p^{1}\qquad$ ....... use $a^{-n}=\displaystyle \frac{1}{a^{n}}=(\frac{1}{a})^{n}$
$=\displaystyle \frac{m^{3}p}{n}$