Answer
Solution set = $\displaystyle \{0,\frac{8}{3}\}$
Work Step by Step
Use the square root property:
If $u^{2}=d$ then $u=\pm\sqrt{d}$
Here, $u=3x-4, \quad d=16,\quad\sqrt{d}=4$
Apply the property
$3x-4=\pm 4 \quad$ ... add 4 to both sides
$ 3x=4\pm 4\quad$ ... divide with 3
$x=\displaystyle \dfrac{4\pm 4}{3}\Rightarrow\left\{\begin{array}{l}
x=\dfrac{4-4}{3}=0,\\
\\
x=\dfrac{4+4}{3}=\dfrac{8}{3}
\end{array}\right.$
Solution set = $\displaystyle \{0,\frac{8}{3}\}$