Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.7 - Equations - Exercise Set - Page 106: 26

Answer

$a.\quad \left\{\begin{array}{l} x\neq 3\\ x\neq-1 \end{array}\right. $ $ b.\quad$ Solution set = $\emptyset$

Work Step by Step

Factor the denominators: For $a^{2}+bx+c$, we search for two factors ob whose sum is c. Here, we find $-3$ and $+1$. $\displaystyle \frac{1}{x-3}-\frac{2}{x+1}=\frac{8}{(x-3)(x+1)}$ $a.$ The denominators in the equation must not be zero: $\left\{\begin{array}{l} x-3\neq 0\\ x+1\neq 0\\ (x-3)(x+1)\neq 0 \end{array}\right\}\Rightarrow\left\{\begin{array}{l} x\neq 3\\ x\neq-1 \end{array}\right. \qquad(*)$ $b.$ Multiply both sides with the LCD,$\quad (x-3)(x+1)$ $(x-3)(x+1) \displaystyle \left[ \frac{1}{x-3}-\frac{2}{x+1} \right]= (x-3)(x+1) \displaystyle \left[\frac{8}{(x-3)(x+1)} \right]\quad$ ... distribute and simplify $ 1(x+1)-2(x-3)=8\quad$ ... distribute and simplify $x+1-2x+6=8$ $-x+7=8\quad$ ... add $-7$ to both sides $-x=1$ $ x=-1 \quad$ ... does not satisfy (*), not a valid solution. Solution set = $\emptyset$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.