Answer
One real solution.
Work Step by Step
For $ax^{2}+bx+c=0$, we can find solutions using the
Quadratic formula: $\displaystyle \quad x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$.
The radicand in the formula is called the discriminant.
$D=b^{2}-4ac$
D is positive $\Rightarrow$ there are two distinct real solutions.
D is zero $\Rightarrow$ there is one (double) real solution.
D is negative $\Rightarrow$ two solutions, complex conjugates (not real).
---
Add $-2x+1$ to both sides, so we have $ax^{2}+bx+c=0.$
$ x^{2}-2x+1=0=0\quad\rightarrow \left\{\begin{array}{l}
a=1\\
b=-2\\
c=1
\end{array}\right.$
$D=b^{2}-4ac=(-2)^{2}-4(1)(1)=4-4=0$
D is zero $\Rightarrow$ one (double) real solution.