Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.7 - Equations - Exercise Set - Page 106: 23

Answer

$a.\quad \left\{\begin{array}{l} x\neq 1\\ x\neq-1 \end{array}\right. $ $ b.\quad$ Solution set = $\{-3\}$

Work Step by Step

Factor the denominators: $\displaystyle \frac{2}{x+1}-\frac{1}{x-1}=\frac{2x}{(x+1)(x-1)}$ $a.$ The denominators in the equation must not be zero: $\left\{\begin{array}{l} x+1\neq 0\\ x-1\neq 0\\ (x+1)(x-1)\neq 0 \end{array}\right\}\Rightarrow\left\{\begin{array}{l} x\neq 1\\ x\neq-1 \end{array}\right. \qquad(*)$ $b.$ Multiply both sides with the LCD,$\quad (x+1)(x-1)$ $(x+1)(x-1) \displaystyle \left[ \frac{2}{x+1}-\frac{1}{x-1} \right]= (x+1)(x-1) \left[\frac{2x}{(x+1)(x-1)} \right]\quad$ ... distribute and simplify $ 2(x-1)-1(x+1)=2x\quad$ ... distribute and simplify $2x-2-x-1=2x$ $ x-3=2x\quad$ ... add $3-2x$ to both sides $-x=3$ $ x=-3 \quad$ ... satisfies (*), a valid solution. Solution set = $\{-3\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.